
International Journal of Engineering and Applied Sciences (IJEAS)

 ISSN: 2394-3661, Volume 3, Issue 6, JUNE 2016

62

Abstract-As we know the software development methods

are divided into two old and agile methods. Old methods

which are based on design and program have many

problems regarding the changes. Change of customer needs

from system, change in technology development, and

change in software development environment facing the

software development to serious problems. Agile methods

are samples of software development methods which

emphasize on rapid progress, speed, and flexibility

regarding the changes. But these methods also have weak

points. Agile methods have diverse ways to development

which one of the most popular one is extreme programming

concerning its operation. This method also has both

challenges and weaknesses. One of these challenges is

related to little attention to qualitative characteristics and

software architecture activities. Different solutions are

suggested to solve this challenge. Each of these solutions has

its own weaknesses and fails to present a suitable approach.

In this article, we are going to present an approach to solve

this challenge. The suggested approach is designed in a way

which tries to find a relation between architecture and

challenge way, and achieve to both qualitative

characteristics and software architecture advantages so that

it is compliant with the values and agility principles of

extreme programming.

Index Terms—agility, extreme programming method,

software architecture, architecture activities, qualitative

characteristics

I. INTRODUCTION

Agile development method is one of the software

development methods which emphasize on the speed and

flexibility in confronting with the changes. As we know,

the customer needs of system, the environment in which

the software develops, and also the technology, changes

during the time. We also know that the software develops

for and by the people [2]. Since old methods which are

based on design and program, cannot control these

changes, the need to have a development method is of

utmost importance. Today agile methods as a new

version of development methods, try to resolve the

problems of old methods. Anyhow, agile methods also

have weaknesses among which the most important ones

are related to software architecture and the lack of

attention to software architecture advantages such as

qualitative characteristics [1, 3, 4, 5, and 6].The main

problem of old and traditional methods is the heavy

documentation which exists in all stages of software

development which leads to a delay throughout a

software. Agile methods are lightweight processes which

need little documentation and reduce the delay in

development. In this method there are also strong and

repetitive relations between customers and software

developers which try to rapidly control the changes and

reduce the required time and costs. Among agile

development methods, extreme programming is one of

the lightweight methodologies which are emphasized by

software population in recent years and a lot of experts

confirmed its superiority compared to traditional methods

[7].

II. INTRODUCTION OF EXTREME

PROGRAMMING METHOD

Extreme programming method is a software development

policy which is shaped on the basis of four values:

communication, simplicity, feedback [8], and dare, to

which the value of respect was added in the year 2000[9].

Values, principles, activities, and roles of people

alongside with a process model, underpin the basis of

extreme programming method. Communication is the

first value of extreme programming. Extreme

programming values verbal communication [1, 10, and

12]. One of the failure reasons of software projects is the

lack of desired relations. Simplicity is the second value of

XP and it is expected that the simplest way is used to

swing us to the goal. Investigating the customer reaction

facing with the product and applying his/her views is

very important. In extreme programming, the system will

always be faced to a feedback. When a problem occurred

in macro designing of system development, and as a

consequence that problem is shown in testing a system,

the team should maintain its coherence and should try to

fix the related problem. The value of respect also

emphasize on maintaining the development respect

among team members [8]. In XP, development has been

done in several publications and repetitions and at the

end of each publication a set of needs is implemented.

During each repetition, the programming couples

program the account stories which were applied

previously by the customers. Each programming couples

receive a duty as an input and then try to design and test

the duty and then development is done which the code

reconstruction will be done by the programmers. When

the application of duties finishes, it will be integrated

with existing codes and the stability of the final codes is

ensured. This process is called task completion. And

since this process is done in parallel and without any

Documentation as Format to Challenge Software

Architecture in Extreme Programming Method

Kamyar abdolmohamadi

, Mansour esmaeilpour

, Mohammad Mehdi shirmohammadi

International Journal of Engineering and Applied Sciences (IJEAS)

 ISSN: 2394-3661, Volume 3, Issue 6, JUNE 2016

63

qualitative supervision by different couples, there is

possibility of shaping weak architecture structures which

affects qualitative properties and the software

architecture will be highly problematic [11].

III. RELATED WORKS

Founders of extreme programming say that we paid

attention to architecture enough and have the following

reasons for that. According to Mr. Back, nailing and

metaphor in extreme programming focus on system

architecture. Nailing solution which resembles sampling

is a simple program with the aim of solving a specified

problem [8]. Architecture nailing is a sample of nailing

used for solving architecture related confusions [8]. Mr.

West & Mr. Hersbolb equate metaphor with architecture

[11, 12]. XP teams present a usual view of how the

program works and call it metaphor. In the best position,

the metaphor is a narrative expression of how a program

operates so that everyone could understand how the

system works and where to search the intended action

and to find a suitable place to add its intended action.

Anyhow the existential philosophy of metaphor is

providing a channel to a simple and common

understanding among beneficiaries of the project [8].

While it shows architecture, communications, structures

and the interactions between components.

IV. 4- SOFTWARE ARCHITECTURE

DOCUMENTATION

Software documentation is a written text delivered with

computer software. These texts usually expound the

software operation and the way of its use which have

different meanings to different people in various roles

and are usually used as a means to make a relationship

between project people. It is one of the important parts of

software engineering because if software is not

documented, making changes will be difficult and

sometimes impossible. In relation to documentation, the

software engineering institution defines a format for

documentation which includes seven parts. If

documentation is based on this format, then it can be

used instead of architecture. The primary view is the first

part of documentation which is the graphic shape and

shows the constitutive components and the relationship

between these components. In the next part which is

called elements catalog, there is a complete expression of

components and the manner of their communications. In

the third part the text chart, software interaction to

environment, the structure and other parts of the software

are expressed in a graphic manner. In the fourth part the

changeable points are specified, those which mostly have

the possibility to change. In the fifth part the logic of

design is expressed and the last two parts called glossary

and other information. The words and expressions are

expressed in the glossary and some information about the

writer, the history and … are presented in the other

information part [1, 14].

V. 5- THE SUGGESTED APPROACH

Our approach is a quest to achieve software architecture

advantages which the most important of them is to

achieving qualitative characteristics in the agile method

and the more effective interaction and achieving to a

comprehensive architecture model without damaging

values and extreme programming principles. So we

should make a relationship between agility and

architecture in order to approach software architecture to

agility. As we know, one of the aims of architecture is

documentation with the help of which we can provide an

effective relationship between beneficiaries, so we used

documentation for achieving the aims of this approach.

One algorithm is suggested to create an agile approach in

order to achieving to qualitative characteristics and

software architecture advantages which considers the

values and agility principles and extreme programming

method. On the other hand it provides qualitative

characteristics in an acceptable manner. In order to

actualize this activity we should first pay attention to

qualitative characteristics since as we suggested before, if

no attention is paid to qualitative characteristics in

architecture structures, the architecture will have a weak

structure. In order to implement our activities first a

modeling team under a supervision of a senior architect

should be created. All of the members including

beneficiaries, programmers, and … should be informed

of the aim and motivation of the system development. It

means that the entire environment of the system should

be specified to analyze its qualitative characteristics. In

other word there should be a general recognition of the

domain. Then we decompose the system on the basis of

qualitative properties and the following algorithm format

and finally a system will be created based on qualitative

characteristics, which includes the following steps:

1) First the functional needs and then the aim of system

development are specified.

2) A top and macro model of the system is designed by

the architect.

3) Due to the macro model system, we divide the system

into several repetitions according to the rules of extreme

programming.

4) We specify account stories for each repetition.

5) We find the qualitative characteristics of each account

story and then add it to other accounts.

International Journal of Engineering and Applied Sciences (IJEAS)

 ISSN: 2394-3661, Volume 3, Issue 6, JUNE 2016

64

6) In the next stage, a time planning is specified for

performing account stories. Project manager,

development manager and the senior planner plan the

order of account stories based on their dependence and

work load of the development team.

7) Now we deliver this account story to the programming

couple which is first implemented by the customer and

also its qualitative characteristics are specified, and the

couple are required to create a simple conceptual model

based on documentation and should send it to the senior

architect at the end of delegated task development.

8) At the end of each repetition, created models are

composed by programmers and senior architects and a

general model is created for each repetition based on

documentation.

In this stage, the architect also can discover the weak

points by revising the structure and present some

solutions for that. Like the primary models, this model

changes during the development and while faced with

needs changes. In the event of encountering changes, we

return to stage 4 and simply declare the structure change

in the total architecture. With the addition of qualitative

characteristics to the first stage, the primary architecture

of the system is designed based on qualitative

characteristics, because these qualitative characteristics

specify the system structure. With performing the above

activity, there is always a conceptual and coherent model

which is available for all members of the development

team.

VI. CASE STUDY

This study is the project of software implementation of

product purchase system, and it means that the

organization wants to know its employees ideas or a

specific unit the product purchase matter. For doing so, a

message which contains a discussed question with a

format of yes/no is sent to the system of all the

employees by the central system. The software

implementation is the question asked from the

development team by the customer. Now we are going to

solve this problem by the suggested algorithm to

understand that if the suggested algorithm has the ability

to add qualitative characteristics and own a general and

abstract model of the system at every moment or not.

Also we want to know how the suggested algorithm

works in the face of changes.

6-1 IMPLEMENTATION WITH THE SUGGESTED

ALGORITHM

 FIRST STAGE OF ALGORITHM

In the first stage of algorithm, we specify the functional

needs of system in a meeting with customer. By

investigating the customer questions, we analyze the

functional needs of system. When there is a need to make

a decision about an important matter in the organization,

software called central system sends a question about the

matter which the organization wants to make a decision

about, in a format of a message which exist in the cell

phones of all the employees. This message is a two

option yes/no question. The installed software on the

employees systems is designed in a way which each

employee can vote once. Irrelevant messages to the

proposed question and also blank or damaged messages

should be identified and deleted by the system. The

central system should send the question and receive the

answers and ideas, gather, analyze, and notify the result.

 SECOND STAGE OF ALGORITHM

In the second stage of algorithm, the senior architect

presents a top and abstract model of the system so that it

has a model before planning and implementation.

Shape 1-6 Simple and general architecture from poll system of product

purchase

security motor

Investigation

and rote

recording

motor

Analysis

motor

Product

motor

DATA

BASE

System

manager

Employee software

part

Management and

decision making part

pc

pc

International Journal of Engineering and Applied Sciences (IJEAS)

 ISSN: 2394-3661, Volume 3, Issue 6, JUNE 2016

65

 EXPLANATION OF THE PARTS OF ABOVE

SHAPE

The task of central system is to create poll, sending to

users, doing security affair, record analysis, and declaring

the results. Poll production motor designs a poll based on

the application of the related unit. In security motor sent

messages are investigated and according to central

attendance system, attendance status of the personnel and

the accuracy of sent messages are investigated by the

authentic personnel. In investigation and sign vote motor,

the information related to poll is investigated and

recorded in the system. In result analysis and sending

motor, the recorded results in data base are analyzed and

a general form is produced to show the poll results and

sent to management unit. In management and decision

making part, the production process of a poll is

investigated in administrative system, and after that the

final confirmation is sent to management center. After

investigating and identifying items related to each

product, the product unit sends an application including

the necessary explanations to the head of IT unit. After

the confirmation, the head of IT unit export command of

new poll to the software management part. In

management and decision making part, an application

including buy of intended products is sent to the head of

the product. In software part which is related to

employees based on the poll distribution strategy

identified in the central part, a poll is distributed among

related employees. After filling the poll form, the

employees do the final record. Then the poll form is sent

to the system management part and security motor.

 THE THIRD STAGE OF ALGORITHM

Regarding the system macro model, we divided the

system into several repetitions based on rules. For

designing the above model, we consider 3 repetitions,

which we implemented the first repetition in this article.

The first repetition designs a new poll on the basis of

managers' applications, the second repetition includes

sending, receiving, and recording the messages, and the

third repetition do the security affairs.

 THE FOURTH STAGE OF ALGORITHM

We identify account stories for each repetition. As the

naming of this repetition shows the purpose is to create a

poll in office.

1) The system investigates the manager’s application to

create a poll.

2) System should have the ability to create poll items

based on related unit application.

3) System should identify persons or poll receivers units

from the first.

 THE FIFTH STAGE OF ALGORITHM

We add qualitative characteristics to the account stories.

Investigating these stories, the development team

considers the qualitative features, performance, security,

availability, and confidence. We can add qualitative

characteristics and the usability for the account story

number 2. It means that we plan the ordering way and the

use of suitable literature to designing the questions of a

poll relative to the responsive personnel. For the account

story number 3 we can add security qualitative features,

which mean that the sending direction of the questions is

used for specific units or specific groups to prevent any

poll from the invalid persons or units.

 THE SIXTH STAGE OF ALGORITHM

In this stage we plan the account stories based on their

dependence to identify the order of their implementation.

As specified, the part of software is put on the system of

all employees and the other part is considered as a central

system, so we divided the account stories into two parts,

a part which is intended to be put on the employees

systems and the part of central system the related account

stories which we put on a special place.

 THE SEVENTH STAGE OF ALGORITHM

The implementation of account stories, as it is specified,

we add qualitative characteristics simply to the account

stories. Now we have account stories which not only

have the customers' ideas but also the qualitative features.

Now we deliver it to programming couples and at the end

of each development, the programmer is required to

create a simple conceptual model of architecture and send

it to the senior architect.

 THE FIRST REPETITION DOCUMENTATION

Poll

application

Regulation

and

investigatio

n

Confirmation

and reference

Poll

production

phase

Form

designin

g

Receivers and

time

efficiency

determination

International Journal of Engineering and Applied Sciences (IJEAS)

 ISSN: 2394-3661, Volume 3, Issue 6, JUNE 2016

66

Shape 2-6 first view of the first repetition in documentation

COMPONENTS CATALOG

1-Poll application: this application is written on behalf

of the poll applicant unit which can include application

items and their related explanations.

2-Regulation and investigation: this part is completed

by the product unit and the poll items and questions and

their related explanations are specified in this part in

order to inserting in poll form.

3-Confirmation and reference: The IT unit investigates

the received form from the product unit and if debugged,

refers it again to the product unit and after the final

confirmation, sends the application to the system

management part.

4-Poll production phase: this phase is controlled by the

system manager which can include IT part expert and it is

formed from two parts which the explanation of each is

sent to the related unit.

5-Form designing: format, questions ordering, outward

designing and the poll form view is completed by the

related IT expert.

6-Receivers: Receiver’s persons or units of the poll are

specified in this part.

VARIABILITY GUIDANCE

1-Investigation and regulation: there may be a

communication between product unit and IT about

how to design.

2-Form designing: there may be a communication

between the technology expert and the system

manager from the point of view of designing and

outward shape.

3-Form designing: we can change the order of

questions, outward designing, type of questions

and options.

VI-2 INVESTIGATING THE SYSTEM

PERFORMANCE CONFRONTING WITH THE

CHANGES

We suppose that the customer needs of the system

change, so we want to measure the system performance

regarding the changes. It is supposed that a customer

requests that the center system could deactivate the

system of those employees who are absent in the office

so that no one can vote with their systems. Development

team can update the office systems before sending a

message, and prevents the sending of messages to those

systems which their users are not present in the office.

With investigating this account story and which this need

is among the duties of the third repetition which is the

same confirmation of persons' identities, the development

team refers to the third repetition and continues the

algorithm from the beginning of the fourth stage; we

want to add qualitative features to this account story. The

intended qualitative feature of this account story is based

on the usability functional needs. We will be informed

from the presence or absence of the users by designing an

interface user and prevent from sending the message to

those users who are absent in the office. In the sixth

algorithm stage, we have an account story, so we don't

have the order of dependence, and composition of their

implementation. In the seventh algorithm stage, we

deliver the account stories to the programming couple

which not only have the customers' ideas but also have

the qualitative features, and the programming couple is

required to create a simple conceptual model in spite of

code writing, and send it to the senior architect. In the

eighth algorithm stage, the senior architect will put the

model created by the programming couples in to the

specified place, and the account stories can be simply

added or deleted or changed so that we can simply update

the general model of the system.

VII. MEASURING THE SUGGESTED

APPROACH

Application

unit

First

repetition

Confirmation

and reference

Unit it

International Journal of Engineering and Applied Sciences (IJEAS)

 ISSN: 2394-3661, Volume 3, Issue 6, JUNE 2016

67

In 1993, a questionnaire was written for the company

IBM in order to measuring the software usability by

Louis. In this questionnaire, a series of questions with an

index table are distributed among development team

engineers. After studying the questions, the engineers are

asked to carefully rate the questions with the help of

index table and the answers of this questionnaire help us

have an accurate understanding from software and know

in which areas we were successful which need more

work. We use Louis poll model to measure the suggested

algorithm. So we need some criterions to measure how

much this algorithm has approached to the main aims. To

analyze the suggested method, a questionnaire including

the intended questions (table 1-7) and 10 criterions in the

area of software architecture advantages, principles and

values of extreme programming, is distributed among

four programmers of poll system development team.

In table 3-7 Programmers discuss about the extreme

programming values which comply with algorithm

regarding feedback and communication, and is in

contradiction with simplicity which its reason is

architecture and modeling of coded samples. So the

programmers should completely learn the architecture

knowledge, and this is the cost we pay to have an abstract

model.

In table 4-7 Programmers discuss about software

architecture advantages. Doing suggested activity in

eighth stage, system has always a general and coherent

model and can be used as a reference for beneficiaries'

discussions, and programmers prove this theory

completely. So we can claim that the suggested algorithm

fulfill nearly all the intended criterions except simplicity.

Although the main aim was to achieve the advantages of

software architecture and its concentration was on these

advantages, but it is simply observed that the swiftness

principles are considered well, and a suitable

synchronization will be made between architecture

activities and other extreme programming activities, and

as a result a more suitable method will be made.

VIII. RESULTS AND CONCLUSION

From the beginning of extreme programming method

appearance, a criticism was brought up to show that lack

of attention to software architecture will cause problems

for projects. During the recent years, several approaches

are presented to resolve this weakness. Since none of the

suggested solutions attend comprehensively to the matter,

no efficient and codified method is presented to respond

to multiple aspects of agility and software architecture.

Considering both aspects of agility and software

architecture, the suggested approach presents a solution

based on agility values which is in comply with

principles and activities of extreme programming method

with the aim of achieving to qualitative characteristics.

International Journal of Engineering and Applied Sciences (IJEAS)

 ISSN: 2394-3661, Volume 3, Issue 6, JUNE 2016

68

Table1-7 questionnaire questions

Questions Subject

Does it emphasize on communication increase between customer, programmer and

other member?

Communication

Is the intended simplicity of xp preserved? Simplicity

Is there a possibility to receiving feedback at every moment? Feedback

Is it possible to access to qualitative characteristics based on this approach? Qualitative

characteristics

Is there are a top and macro model form system? Abstract model

Can the created model be a reference to development team discussions? Beneficiaries

relation

Table2-7 indexes in programmer’s statistical population

Parameter score

Very agree 5

Agree 4

No idea 3

Disagree 2

Very disagree 1

Table 3-7 extreme programming values in programmer is statistical population

Responsive communication Simplicity feedback

A Very agree Disagree agree

B Very agree Very disagree agree

C Very agree Disagree Very agree

D Very agree Very disagree Very agree

SUM 20 6 18

International Journal of Engineering and Applied Sciences (IJEAS)

 ISSN: 2394-3661, Volume 3, Issue 6, JUNE 2016

69

Table 4-7 software advantage in programmer’s statistical population

Beneficiaries relation Abstract model Qualitative

characteristics

Responsive

Very agree Very agree Very agree A

Very agree Very agree Very agree B

Very agree Very agree Very agree C

Very agree Very agree Very agree D

20 20 20 SUM

REFERENCE

[1]Shariflo a (2008), “embedding architectural practices into extreme

programming”MSc. Computer group, shahid beheshti university,

Tehran, Iran

 [2]
BroderickCrawford,ClaudioLe´ondelaBarra,RicardoSotoandEricMonfro

y”AgileSoftware Engineering as Creative Work” CHASE 2012, Zurich,

Switzerland IEEE,PP.20-26

[3] Turk D. France R. Rumpe B, 2012 ،“Limitations of Agile Software
Processes “Proceedings of 3rd International Conference on Extreme

Programming and Flexible Processes in Software Engineering، pp. 43-

46، 2002.

[4] Beck K. Boehm B، 2003،”Agility through Discipline a Debate”
Computer،vol. 36، no.6.

[5] Elssamadisy A. Schalliol G ، 2002. “Recognizing and responding to
"bad smells" in extreme programming” Proceedings of the 24th

International Conference on Software Engineering، pp. 617-622

[6] Jense R. M ler T. Sonder P, Tjr nehj G ، 2006.”Programming;

Introducing “Developer Stories Proceedings of 7th International

Conference on Agile Processes and Extreme Programming in Software

Engineering، pp. 164 – 168

 [7] Williams L, Upchurch R., 2001. “Extreme programming for
software engineering education”31st ASEE/IEEE Frontiers in

Education Conference

 [8] Beck K. ، 2000.Extreme Programming Explained: Embrace

Change، 1st ed. Addison-Wesel Professional

[9] Beck K, Andres C2004... Extreme Programming Explained:

Embrace Change، 2nded. Addison-Wesley Professional،

[10] Boehm B. Turner R. ، 2003. Balancing Agility and Discipline a

Guide for the Perplexed، Addis Wesley

[11] Zafar Karimi,Sajjad Behzady, Ali Broumandnia, 2012, ‘Achieving

the Benefits of Agility in Software Architecture xp’،(JCSIT) Vol 4, No

5

 [12] West D. Metaphor، 2002.، Architecture، and XP، Agile Alliance

[13] Herbsleb J. Root D. Tomayko J. ، 2003. ‘The extreme

Programming (XP) Metaphor and Software Architecture’، Technical
Report، Software Engineering Institute،Carnegie Mellon University

 [14] Clements P.Bachmann. F. Bass L., Garlan D., 2002, Documenting
Software Architectures: Views and Beyond, Addison Wesley.

 First Author. M.A student, computer group, faculty of

engineering, Islamic azad university, saveh, Iran,

 Kamyarabd7@gmail.com

Second Author.assistant professor, computer group, faculty of

engineering, Islamic azad university, Hamadan, Iran,

esmaeilpour@iauh.ac.ir

Third Author. Assistant professor, computer group, faculty of

engineering, Islamic azad university, Hamadan, Iran,

mmshirmohammadi@iauh.ac.ir

mailto:Kamyarabd7@gmail.com

